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Kinetics of segregation in a two-lane highway traffic flow
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College of Engineering, Shizuoka University, Hamamatsu 432, Japan

Received 4 June 1996

Abstract. A particle-hopping model is presented to simulate the segregation of cars on a two-
lane highway which consists of a slow lane and a fast lane. The changing of cars between
the slow and fast lanes is taken into account. When a fast (slow) car overtakes (is overtaken
by) a slow (fast) car on the slow (fast) lane, the fast (slow) car shifts to the fast (slow) lane.
By satisfying the demand for faster movement, a segregation of cars occurs. The car densities,
velocities and currents on the slow and fast lanes are calculated by computer simulation. The
velocity distributions on the two lanes are also shown. It is found that the traffic current is
enhanced by the changing of cars between two lanes. The kinetics of segregation between the
slow and fast lanes is described in terms of a Boltzmann-like kinetic equation. The kinetic
equation is solved by a numerical method. The velocity distributions, car densities, velocities
and currents obtained from the kinetic equation are compared with the simulation results.

1. Introduction

Recently, traffic problems have attracted considerable attention. A variety of approaches
have been applied to describe the collective properties of traffic flow [1–11]. The car-
following models, the cellular automaton (CA) models and the particle-hopping models are
being applied successfully to simulations of traffic. When the number of cars is large, traffic
flows can be modelled phenomenologically in terms of a one-dimensional compressible gas.
Such a hydrodynamic approach predicts the appearance of traffic jams or traffic solitons.
However, the hydrodynamic approach does not naturally describe the behaviour of traffic
flows in the low-density limit where there are large heterogeneities in traffic density [7]. For
this situation, such microscopic models as the CA models or the particle-hopping models
will provide a more appropriate description. Furthermore, it is important to know the
velocity distribution of cars moving on a multi-lane highway since each driver wants to
satisfy the demand for faster movement.

Nagel and Schreckenberg [3] introduced a stochastic CA model to take into account the
acceleration or deceleration of cars. They showed that the start–stop waves (traffic jams)
appear in the congested traffic region as is observed in real freeway traffic. Bandoet al
[9] proposed the optimal velocity model in which a car accelerates or decelerates according
to the dynamical equation of motion. Komatsu and Sasa [12] derived the modified KdV
equation from the optical velocity model to describe the traffic jam.

Nagel and Herrmann [13] and Nagel [14] found that the open-boundary version of the
CA traffic model exhibits a self-organized criticality, providing enough input and output of
cars at the boundaries. Nagatani [15] also showed that the self-organized criticality appears
in the asymmetric simple exclusion model with open boundaries where the annihilation of
traffic jams is described by the ballistic annihilation process.
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In contrast to the traffic jam at high car density, car bunching occurs even at low car
density. Nagatani [11] presented the stochastic particle-hopping model for the car bunching
which occurs due to the difference of the inherent velocities of individual cars. The car
with low velocity prevents the car with high velocity from going ahead. Cars flowing on
a highway cluster more and more when moving ahead. Ben-Naimet al [11] analysed the
kinetic clustering of cars by using a simple aggregation model. They found the scaling
relationship of the kinetic clustering. It was shown that the velocity distribution of cars is
important for the car-bunching phenomena.

The characteristic properties of traffic flow on a two-lane highway have been little
studied for comparison with single-lane traffic. By extending the single-lane highway to
the two-lane highway, car bunching is reduced by the changing of cars between the first
and second lanes, and the traffic current is also enhanced by more than twice the current
of a single lane. This enhancement of the traffic current is due to the segregation of cars
on the slow and fast lanes. It will be important to know the characteristic properties of the
two-lane highway traffic flow.

In this paper, we present the particle-hopping model to simulate the two-lane highway
traffic flow. In the model, the inherent velocities of individual cars and the changing of cars
between the two lanes are taken into account. Cars with high velocity tend to move on the
fast lane and cars with low velocity move on the slow lane. We study this segregation of
cars flowing on a two-lane highway by computer simulation. We calculate the car densities,
velocities, currents and velocity distributions on the two lanes. We formulate the kinetics
of segregation by a Boltzmann-like kinetic equation. We solve numerically the kinetic
equation. We obtain the characteristic traffic properties and compare this result with the
simulation result.

The organization of the paper is as follows. In section 2 we present the stochastic
particle-hopping model of a two-lane highway. We study the traffic behaviour on a two-lane
highway by computer simulation. In section 3 a simple theoretical consideration is given
for a perfect segregation between slow and fast cars on a two-lane highway. In section 4
the two-lane traffic flow is formulated by a Bolzmann-like kinetic equation. The kinetic
equation is solved by a numerical method. The result obtained by the kinetic equation is
compared with the simulation result. Finally, section 5 contains a brief summary.

2. Model and simulation

We consider cars flowing on a two-lane highway which consists of a slow lane and a fast
lane. Each car has its own inherent velocity. We assume that the car velocities are limited
between the maximal and minimal velocities. The maximal velocity is controlled by the
cars’ performance. The minimal velocity is governed by the limit of lower velocity which is
determined by public demand. If a car is not blocked ahead by another car, the car moves
with its inherent velocity. However, if a car is blocked ahead by a slow car, it moves
with the same velocity as the slow car. Each driver wants to satisfy the demand for faster
movement. When a fast car overtakes a slow car on the slow lane and the velocity of the
overtaking car is larger than the shifting velocityvc, the fast car shifts to the fast lane. On
the other hand, if a slow car is overtaken by a fast car on the fast lane, the slow car shifts to
the slow lane. Then a segregation of cars occurs: fast cars gather on the fast lane and slow
cars are on the slow lane. Without changing lane, car bunching or clustering occurs. Then
the traffic current is controlled by the slowest car. However, by allowing cars to change
lanes, the traffic current is enhanced upon that without changing lanes.

We try to simulate the traffic flow by as simple a model as possible. We extend the
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one-dimensional fully asymmetric simple exclusion model with parallel update to take into
account both the inherent velocity of cars and the changing of cars between the two lanes.
The particle-hopping model is defined on two one-dimensional lattices of 2× L sites with
periodic boundary conditions. Each site is occupied by a single car or is empty. On odd time
steps, cari on the slow lane moves ahead by one step with the inherent hopping probability
pi unless cari is blocked ahead by another car. If cari is blocked ahead by another car,
its hopping probabilitypi is larger than the shifting velocityvc and its nearest-neighbour
site on the fast lane is unoccupied, cari shifts to its nearest-neighbour site on the fast lane.
On odd time steps one update of the system for an arbitrary configuration is performed in
parallel for all cars on the slow lane. On even time steps, carj on the fast lane moves
ahead by one step with the inherent hopping probabilitypj unless carj is blocked ahead by
another car and carj is overtaken by another car. When carj on the fast lane is blocked
ahead by another car, carj does not move and remains on the site. If carj on the fast lane
is overtaken by another car and its nearest-neighbour site on the slow lane is unoccupied,
car j shifts to its nearest-neighbour on the slow lane. On even time steps one update of
the system for an arbitrary configuration is performed in parallel for all cars on the fast
lane. Figure 1(a) shows schematically the rules of the model. The top traffic configuration
changes to the bottom pattern after two time steps. The car indicated by the double circle
represents the car overtaking a slow car on the slow lane (lane 1). After the next time step,
the car shifts to the fast lane (lane 2) vertically. The car indicated by the square-dot point
represents the car being overtaken by a fast car on the fast lane (lane 2). After the next
time step, the car shifts to the slow lane (lane 1) vertically. In the limit of no changing
lane, our particle-hopping model is reduced to the model on the single-lane highway.

The car velocity is taken into account as the hopping probability in the particle-hopping
model. The car velocityv is normalized by the maximal velocityvmax. The normalized
velocity v/vmax is limited betweenvmin/vmax(< 1) and 1 wherevmin is the minimal velocity.
In the dilute limit of car density, cari moves ahead with the mean velocitypi at coarse-
grained time scales since cari is little blocked by another car. The hopping probability
pi corresponds to the inherent velocityvi of individual cars wherevi is normalized and
dimensionless. The limiting value of the hopping probability for changing lane corresponds
to the shifting velocityvc wherevc is also normalized by the maximal velocity. Car bunching
occurs due to the difference of inherent velocities of individual cars. A car moving with
low velocity prevents a car moving with high velocity from going ahead. Cars flowing on
a highway cluster more and more. By introducing the change of cars between the slow and
fast lanes, car bunching is reduced by the segregation effect which is induced by changing
lane. The traffic current is enhanced by reducing car bunching.

In this model, the traffic problem on a highway is reduced to its simplest form while
the essential features are maintained. The feature includes the flow in one direction of
cars which cannot overlap. Furthermore, this model possesses both properties that the car
moving with low velocity prevents the car moving with high velocity from going ahead and
that the car on the slow (fast) lane shifts to the fast (slow) lane when the fast (slow) car
overtakes (is overtaken by) the slow (fast) car on the slow (fast) lane.

We perform the computer simulation for the above model. Initially, cars are randomly
distributed on the sites of two one-dimensional lattices with car densityρ. Furthermore, the
hopping probabilitypi is assigned to each car. The hopping probabilitypi assigned to each
car does not change with time. We assume that the hopping probabilitypi is uniformly
distributed betweena andb. We seta = 0.5 andb = 1.0 wherea is the normalized minimal
velocity andb is the normalized maximal velocity. The simulations are performed for the
system sizeL = 104 and the car densityρ = 0.1. In the limiting case of no changing lanes,
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Figure 1. (a) The lane-changing rules are shown schematically. The top traffic configuration
changes to the bottom pattern after two time steps. The car indicated by double circles represents
the car overtaking a slow car on the slow lane (lane 1). After the next time step, the car shifts
to the fast lane (lane 2). The car indicated by the square-dot point represents the car being
overtaken by a fast car on the fast lane (lane 2). After the next time step, the car shifts to the
slow lane (lane 1). (b) A typical spacetime pattern of cars for car densityρ = 0.1 and shifting
velocity vc = 0.7 up to 500 time steps where the system size isL = 190. The pattern on
the right-hand side represents the spacetime configuration on the fast lane. The pattern on the
left-hand side represents the spacetime configuration on the slow lane. The horizontal direction
indicates that in which cars move ahead. The vertical direction is that of time. A trajectory of
a single car is represented by a curve. Fast cars gather on the fast lane and slow cars are on the
slow lane.

the typical headway〈s〉 scales as〈s〉 ≈ t0.5 for values less thanρ = 0.1. With increasing
car density, the typical headway is saturated to a constant value by the excluded effect. In
order to study the traffic flow on a two-lane highway at low density, we set the car density
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ρ = 0.1 Each run is calculated until 105 time steps. For illustration, figure 1(b) shows a
typical pattern of cars for the car densityρ = 0.1 and the limiting velocityvc = 0.7 up to 500
time steps where the system size isL = 190. The pattern on the right-hand side represents
that on the fast lane. The pattern on the left-hand side represents that on the slow lane. The
horizontal direction indicates that in which cars move ahead. The vertical direction is that
of time. A car is indicated by a dot. The trajectory of a car is represented by a curve. Fast
cars gather on the fast lane and slow cars are on the slow lane. Segregation occurs between
the two lanes. For comparison with single-lane highway traffic, car bunching is reduced by
the segregation. In the limit of the shifting probabilitypexc = 0, the typical headway shows
power law behaviour. The limit corresponds to the case without changing lane. Then the
traffic current is controlled by the slowest car. Car bunching occurs. However, by allowing
cars to change lane, the traffic current is not limited by the slowest car. Then the traffic
current is enhanced. In the present model, the shifting probabilitypexc equals one. Then
the scaling behaviour of the typical headway breaks down. The enhancement of the traffic
current is shown quantitatively in figure 4.

Figure 2. The plot of mean velocities〈v1〉, 〈v2〉 and mean densities〈ρ1〉, 〈ρ2〉 on slow and
fast lanes against timet for shifting velocity vc = 0.8 and densityρ = 0.1. The segregation
between slow and fast lanes occurs with increasing time.

Figure 2 shows the plot of mean velocities〈v1〉, 〈v2〉 and mean densities〈ρ1〉, 〈ρ2〉 on
the slow and fast lanes against timet for the shifting velocityvc = 0.8. With increasing
time, segregation occurs: the mean velocity〈v1〉 of cars on the slow lane decreases and
the mean velocity〈v2〉 of cars on the fast lane decreases. After 500 time steps, the mean
velocities and the densities become constant values of a steady state. Figure 3 shows the
plot of steady-state values of mean velocities〈v1〉, 〈v2〉 and mean densities〈ρ1〉, 〈ρ2〉 against
the shifting velocityvc. With increasing shifting velocityvc, the velocity〈v2〉 of the fast
lane increases, and in constrast, the density〈ρ2〉 of the fast lane decreases. In figure 4, we
show the plot of traffic currents〈J 〉, 〈J1〉 and 〈J2〉 against the shifting velocityvc where
〈J 〉, 〈J1〉 and〈J2〉 are, respectively, the total traffic currents (〈J 〉 = 〈J1〉 + 〈J2〉), the traffic
current of the slow lane and the traffic current of the fast lane. With increasing shifting
velocity vc, current〈J2〉 of the fast lane decreases. In contrast, current〈J1〉 of the slow lane
increases with shifting velocityvc. Total current〈J 〉 remains a constant value until shifting
velocity vc = 0.8. Without changing lanes, the traffic current is controlled by the slowest
car. Without changing lanes, the total current equals twice〈J 〉 = 0.1 of the single-lane
current〈J1〉 = 〈ρ1〉vmin = 0.1 × 0.5. With changing lanes, the total current〈J 〉 increases
by about 30%. This enhancement of the current is important in traffic technology. The
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Figure 3. The plot of steady-state values of mean velocities〈v1〉, 〈v2〉 and densities〈ρ1〉, 〈ρ2〉
against shifting velocityvc for densityρ = 0.1.

Figure 4. The plot of total traffic current〈J 〉, slow-lane current〈J1〉 and fast-lane current〈J2〉
against shifting velocityvc for densityρ = 0.1.

enhancement is due to the car segregation between the fast and slow lanes. The traffic
current increases even in the limit ofvc = 0.5 where the cars on the slow lane shift to the
fast lane if any cars overtake the slow car.

Figures 5 and 6 show the inherent velocity distributions on the slow and fast lanes for
shifting velocitiesvc = 0.5 and 0.6 where the car densityP(v) with the inherent velocityv
is plotted with the interval1v = 0.01. The fast cars gather on the fast lane and the slow
cars gather on the slow lane. By this segregation, each car satisfies the demand for faster
movement.
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Figure 5. The inherent velocity distributionsP(v) on
the slow and fast lanes for shifting velocityvc = 0.5
and densityρ = 0.1.

Figure 6. The inherent velocity distributionsP(v) on
the slow and fast lanes for shifting velocityvc = 0.6
and densityρ = 0.1.

3. Perfect segregation

We consider the limiting case of a perfect segregation in which the cars faster than shifting
velocity vc shift to the fast lane and the cars slower than shifting velocityvc remain on the
slow lane. After the fast cars shift to the fast lane, the cars on the fast lane do not shift
to the slow lane. In this case, the traffic properties are calculated easily. The velocity of
the slow lane is controlled by the slowest car on the slow lane:v1 = 0.5. The velocity
of the fast lane is also limited by the slowest car on the fast lane:v2 = vc. The densities
on the slow and fast lanes are given byρ1 = 4(vc − 1

2)ρ and ρ2 = 4(1 − vc)ρ. The
traffic currents are obtained:J1 = ρ1v1 = 2(vc − 1

2)ρ, J2 = ρ2v2 = 4vc(1 − vc)ρ and
J = J1 + J2 = (−1 + 6vc − 42vc)ρ whereJ1, J2, and J are the slow-lane current, the
fast-lane current and the total current. Figure 7 shows the plot of the velocitiesv1, v2 and
the densitiesρ1, ρ2 against shifting velocityvc for ρ = 0.1. Figure 8 shows the plots of
the currentsJ1, J2 andJ againstvc. By comparing the results with the simulation results
in figures 3 and 4, the densitiesρ1 andρ2 deviate largely at low and intermediate densities
from those in figure 3. Also, the traffic currentsJ1 and J2 deviate largely at low and
intermediate densities from those in figure 4. The total currentJ increases with shifting
velocity vc at low density, reaches the maximal valueJ = 0.12 at vc = 0.75, and then
decreases at high density. The maximal current increases by about 20 percent more than
twice the single-lane current. The traffic behaviour of the perfect segregation is definitely
different from the simulation results. Therefore, the two-lane traffic properties cannot be
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Figure 7. The plot of velocitiesv1, v2 and
densitiesρ1, ρ2 against shifting velocityvc for
densityρ = 0.1 in the case of perfect segregation.

Figure 8. The plot of slow-lane currentJ1, fast-
lane currentJ2 and total currentJ (= J1 + J2)

against shifting velocityvc for density ρ = 0.1
in the case of perfect segregation.

described by the perfect segregation. It is necessary to describe the traffic segregation by
the kinetic equation.

4. Kinetic equations

We describe the kinetics of car segregation in terms of Boltzman-type kinetic equations. We
denote the densityP1(v, t) (P2(v, t)) of cars on the slow (fast) lane with velocityv at time
t . In the slow lane, the loss ofv cars due to collisions with slowerv′ cars occurs at a rate
proportional to the relative velocity,(v − v′). We assume that the pair correlation function
factorizes into a product of single-car velocity distributions,P1(v, v′, t) = P1(v, t)P1(v

′, t).
If the fast car on the slow lane overtakes the slow car and the nearest-neighbour site on the
fast lane is unoccupied, the fast car on the slow lane shifts to the fast lane. The probability
that a site on the fast lane is unoccupied is given by{

1 −
∫ vmax

vmin

dv′′ P2(v
′′, t)

}
.
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Thus, the loss ofv cars is given by the first term of equation (1) below. Similarly, in the
fast lane, the loss ofv cars due to collisions with fasterv′ cars occurs at a rate proportional
to the relative velocity,(v′ − v). When the slow car on the fast lane is overtaken by the
fast car and the nearest-neighbour site on the slow lane is unoccupied, the slow car on
the fast lane shifts to the slow lane. Thus, the loss ofv cars is given by the second term
equation (2) below. Since the cars shift to the other lane by collisions, the loss ofv cars on
the slow (fast) lane becomes the product ofv cars on the fast (slow) lane. For cars faster
than the limiting velocityvc, the velocity distributionsP1(v, t) andP2(v, t) on the slow and
fast lanes, respectively, described by

∂P1(v, t)

∂t
= −

{
1 −

∫ vmax

vmin

dv′′ P2(v
′′, t)

}
P1(v, t)

∫ v

vmin

dv′ (v − v′)P1(v
′, t)

+
{

1 −
∫ vmax

vmin

dv′′ P1(v
′′, t)

}
P2(v, t)

∫ vmax

v

dv′ (v′ − v)P2(v
′, t) (1)

∂P2(v, t)

∂t
= +

{
1 −

∫ vmax

vmin

dv′′ P2(v
′′, t)

}
P1(v, t)

∫ v

vmin

dv′ (v − v′)P1(v
′, t)

−
{

1 −
∫ vmax

vmin

dv′′ P1(v
′′, t)

}
P2(v, t)

∫ vmax

v

dv′ (v′ − v)P2(v
′, t) (2)

wherevmin and vmax are the minimal and maximal velocities. Equations (1) and (2) hold
for the cars faster than shifting velocityvc. On the slow lane, the cars slower than shifting
velocity vc do not shift to the other lane. The slow car prevents the fast cars from going
ahead. The car velocity is controlled by the slowest car. The slow cars on the slow lane
induce car bunching or clustering. Ben-Naimet al [1] derived the governing equation for
the car bunching beyond the mean-field approximation. The velocity distribution on the
slow lane is given by

∂P1(v, t)

∂t
= −P1(v, t)

∫ v

vmin

dv′ (v − v′)P1(v
′, 0) (3)

for vmin < v < vc. Here, the pair correlation function factorizes into a product of
single-particle velocity distributions,P1(v, v′, t) = P1(v, t)P1(v

′, 0) but with different time
arguments for the two factors. In contrast, in the conventional Boltzmann equation, the
decomposition would involve the same argument for each velocity distribution. Thus the
exact equation (3) quantitatively indicates the degree of approximation of the mean-field
Boltzmann equation. The car densityP1(vmin, t) of the slowest car is given by

∂P1(vmin, t)

∂t
= P1(vmin, t)

∫ vmax

vmin

dv′ (v′ − vmin)P1(v
′, 0). (4)

Since the car on the fast lane can shift to the slow lane, the velocity distribution on the fast
lane can be described by equation (2) forvmin < v < vmax.

We solve equations (1)–(4) simultaneously by the numerical method in which the
integration is replaced by the summation with the interval1v = 0.01 and the time derivative
is replaced by the time difference,P(v, t + 1) − P(v, t). Figure 9 shows the velocity
distributionsP1(v, ∞) and P2(v, ∞) in the steady state after sufficiently large times for
shifting velocityvc = 0.5. The slow cars tend to gather on the slow lane, and in contrast,
the fast cars tend to gather on the fast lane. The velocity distributions are compared with
those in figure 5 obtained by the model simulation. The velocity distributions obtained by
the Boltzman-type equations agree well with the results in figure 5. Also, figure 10 shows
the velocity distributions of the steady state for limiting velocityvc = 0.7.
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Figure 9. The velocity distributionsP1(v, ∞) and
P2(v, ∞) on the slow and fast lanes in the steady
state for shifting velocityvc = 0.5 and density
ρ = 0.1.

Figure 10. The velocity distributionsP1(v, ∞)

and P2(v, ∞) on the slow and fast lanes in the
steady state for shifting velocityvc = 0.7 and
densityρ = 0.1.

We calculate the mean velocities〈v1〉, 〈v2〉, the mean densities〈ρ1〉, 〈ρ2〉, and the mean
traffic current〈J1〉, 〈J2〉, 〈J 〉(= 〈J1〉+〈J2〉). The mean velocity〈v1〉, the mean density〈ρ1〉
and the mean current〈J1〉 are defined by

〈v1〉 ≡
∫ vmax

vmin

dv vP1(v, ∞)/

∫ vmax

vmin

dv P1(v, ∞)

〈ρ1〉 ≡
∫ vmax

vmin

dv P1(v, ∞)

and

〈J1〉 ≡
∫ vmax

vmin

dv vP1(v, ∞).

Figure 11 shows the plot of mean velocities〈v1〉, 〈v2〉 and mean densities〈ρ1〉, 〈ρ2〉 against
velocity vc. The density〈ρ1〉 on the slow lane increases with shifting velocityvc and on the
other hand, the density〈ρ2〉 decreases with increasingvc. Also, the mean velocity〈v1〉 on the
slow lane decreases with increasingvc since car bunching occurs. The results are compared
with those in figure 3 obtained by the model simulation. The values of〈v1〉, 〈ρ1〉 and〈ρ2〉
agree well with the simulation results in figure 3. However, the velocity〈v2〉 on the fast lane
deviates from the simulation result. This is due to neglecting the car bunching on the fast
lane in kinetic equation (2). Figure 12 shows the plot of the traffic currents〈J1〉, 〈J2〉 and〈J 〉
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Figure 11. The plot of mean slow-lane velocity〈v1〉
mean fast-lane velocity〈v2〉, mean slow-lane density〈ρ1〉
and mean fast-lane density〈ρ2〉 against shifting velocity
vc for densityρ = 0.1.

Figure 12. The plot of mean slow-lane current〈J1〉,
mean fast-lane current〈J2〉 and mean total current
〈J 〉(= 〈J1〉 + 〈J2〉) against shifting velocityvc for
densityρ = 0.1.

against shifting velocityvc. The results are compared with those in figure 4 obtained by the
model simulation. The traffic current〈J2〉 on the fast lane is larger than the result in figure 4.
This is due to the overestimate of the velocity〈v2〉 on the fast lane. Thus, the total current
〈J 〉 is larger than the result in figure 4. This may be due to the approximation of the pair
correlation function factorizing into a product of single-car velocity distributions. The values
of the traffic properties calculated by the kinetic equations are consistent with the simulation
results except for the velocity on the fast lane. Furthermore, in order to obtain more accurate
values, it will be necessary to take into account the car bunching on the fast lane.

5. Summary

We have studied the traffic flow on a two-lane highway by the simulation model. We have
computed the velocity distributions of two lanes, and the mean traffic properties (density,
velocity and current). We have shown that a car segregation between the slow and fast lanes
occurs. Particular emphasis has been paid to the velocity distributions. We have found that
lane changing induces an enhancement of the traffic current. Furthermore, we have inves-
tigated the kinetics of the traffic flow on a two-lane highway by the use of Boltzmann-type
kinetic equations. We have computed the velocity distributions of the two lanes by solving
numerically the kinetic equations. We have compared the velocity distributions obtained by
the kinetic equation with those by the simulation model. We have shown that the traffic
properties agree well with the simulation results except for the mean velocity of the fast lane.

The two-lane traffic model introduced in this paper leads to behaviour definitely different
from a single-lane traffic flow. The behaviour is due to taking into account lane changing.
The enhancement of the traffic current found in our two-lane model will be important in
traffic technology. In order to describe traffic flow more realistically, it will be necessary
to extend the two-lane traffic model to multi-lane traffic.
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